HOW DO I ...

ON A CASIO

$f x: 200 \mathrm{au}$

CASIO
fx-8200 AU

THE USEABLE MANUAL

Made in Australia

Contents

1. Getting started
1.1 Getting ready to begin 4
1.2 Some first steps 5
2. Decimal, fractions and mixed numbers
2.1 Input and output settings 7
2.2 Displaying decimals - Fix and Norm 10
2.3 Entering and simplifying fractions 13
2.4 Fractions and decimals 14
2.5 Fractions and mixed numbers 16
2.6 Entering mixed numbers 17
2.7 Letter memories 18
3. Powers and roots
3.1 Powers 20
3.2 Square roots and other roots 22
3.3 Square roots - Pythagoras 24
3.4 A financial calculation 25
3.5 Logarithms 26
4. Statistics
4.1 Things to know 27
4.2 Entering, editing and deleting data 28
4.3 Five number summary 30
4.4 Mean and standard deviation 32
4.5 Linear Regression 34
4.6 Random numbers 36
5. Angles and trigonometry
5.1 Degrees, minutes and seconds 38
5.2 Trigonometric calculations 40
5.3 Scientific notation and ENG notation 42
5.4 Radians to degrees 43
6. Numbers
6.1 Lowest common multiple (LCM) 44
6.2 Greatest common divisor (GCD) 46
6.3 Prime factorisation 48
6.4 Verifying equality 49
6.5 Summation 51
7. Table
7.1 Making a table of values for a function 54
7.2 Solving an equation using table of values. 56
7.3 Checking if two algebraic expressions are equal 58
8. Counting and probability
8.1 Factorials 60
8.2 Permutations 62
8.3 Combinations 63
8.4 Distribution - Normal 64
8.5 Distribution - Binomial 66
9. Complex numbers and vectors
9.1 Complex number calculations 68
9.2 Vector calculations 70

1.1 Getting ready to begin

Turn your calculator ON.
In the picture you can see a SHIFT key, (1). Pressing it allows you to use the blue functions above certain keys.

Note that this key does not work like a computer's Shift key. A calculator's Shift key is pressed and released and then the next button pressed.

In Section 1 we assume you have just taken the fx-8200 AU out of the box and have not changed any of the out-of-thebox (factory/default) settings.

If your calculator is not out-of-the-box, then we suggest you initialise it, which returns all the settings back to the factory settings.

To initialise, press:
웅 to open the settings,

(©1) to select Yes,
(01) to reset the calculator.

The HOME screen will then be displayed and the Calculate application will be selected.

(01) to launch the Calculate application.

You are now ready to start!

1．2 Some first steps

An almost empty screen awaits you．
Notice the flashing cursor to the left of screen． This signifies the calculator is ready for you to
 enter a calculation．

Let＇s calculate $325 \div 30$ ．
Enter：
（3）（2）（5）
\div

（3）（0）
（EXE）
The result in fractional form，$\frac{65}{6}$ ，is shown on the right side（the output side）of the screen．
Note the fraction is in simplified form．
To see the decimal approximation of the result， press：
（1）then（to access \approx ）．
10.83333333

Press（AC）．This clears the screen．
Notice the small arrow pointing upwards．
This indicates that the calculator has stored the previous calculation．

Press ©（the cursor key above ©（®）．
The previous calculation is recalled．

Suppose we wanted to calculate $325 \div 35$ ．
Press $\otimes \ominus \ominus \ominus \ominus \ominus(>)$ to move the cursor to the right of the 0 ．
（Or press（く）．）
Press（＊）to remove the 0 and then press
（5）then（⿺辶大巳）
What do you think $325 \div 40$ will be？

John owns a one-man gardening business. Every time he does a job, he calculates the amount he is owed by multiplying the number of hours worked by $\$ 55$ and then adds 15% to this figure to cover his health cover and other similar things.

If he completed a job that took 7 hours, how much would he be owed?
First calculate 55×7.

385 will now be stored in the answer memory.

Now let's find the 'extra' that John adds to this. Enter:
(1) (5)
(1) (ㄷ) to select Probability

(10) to select \%
(0)
(×) Ans
(EKE)
To see the decimal form of this result press:

(BM) \vee to select Decimal (OK)

Now we need to add $\$ 57.75$ to $\$ 385$.
We can use the answer memory again. Enter:
Ans)

(4) (3) (8) (5)

To get the decimal form of the answer directly, press:
(1) then (Exes) (to access \approx).

Alternatively, we could have calculated 115% of 55×7.
Enter:
(1) (1) (5)
(5)
(5) (5) \otimes
442.75
(1) then (Exes) (to access \approx).

Ah, the same result!

2.1 Input and output settings

When using the Calculate application, you supply an input and the calculator supplies an output. Imagine you supplied the input $4 \times \frac{7}{3}$. Should the calculator supply the output,

- $\frac{28}{3}$ or
- 9.333333333 .

You can ensure you get the form of output you want by choosing the appropriate Input/Output setting.

This calculator has four Input/Output settings:

1. MathI / MathO,
2. MathI / DecimalO,
3. LineI / LineO,

oHathI/Hath0

OHathI/Decimal0
oLineI/LineO
oLineI/Decimal0
4. LineI / DecimalO.

MathI/MathO

MathI/MathO allows you to use the nice templates that support natural display input, meaning that you can enter a calculation as you would write it on a piece of paper. This setting supplies outputs in what is called Standard form.

Standard form is usually the form of a number that is not a decimal.
Some examples are:

- fractional form,
- surd form,
- in terms of π.

If you supply the input:

- $4 \times \frac{7}{3}$, the output is $\frac{28}{3}$,
- $\sqrt{2} \times \sqrt{10}$, the output is $2 \sqrt{5}$,
- $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$, and the angle unit is set to radians, the output is $\frac{1}{3} \pi$.

MathI / DecimalO

MathI / DecimalO allows you to use the nice templates that support natural display input but supplies outputs in Decimal form.
If you supply the input:

- $4 \times \frac{7}{3}$, the output is 9.333333333 ,
- $\sqrt{2} \times \sqrt{10}$, the output is 4.472135955 ,
- $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$, and the angle unit is set to radians, the output is 1.047197551 .

Suppose you want Decimal outputs.
You can change the Input/Output setting to MathI/DecimalO, and check it works, by doing the following:

From the (a) screen, launch the Calculate
application by selecting calculate and pressing (ExC).

Press:
우 to select Calc Settings λ,
(©1) to select Input/Output \rangle,
(01) () to select OMathI/DecimalO

- HathI / Math0

OHathI/Decimalo
OLineI/Line0
oLineI/Decimalo
(01) to choose the MathI/DecimalO setting.

OHathI/Hath0 GHathI/Decimelo OLineI/Line0 oLineI/Decimalo
(AC) to return to the calculation screen.

Enter:

You can see the recurring decimal form of 9.333333333 by pressing:

(a) (v) \vee to select Recurring Decimal (EXE)

Enter:
(10) (2) (จ)
®
(1) (0)

$$
\begin{array}{|l|}
\\
\\
4.472135955 \\
\hline \sqrt{2} \times \sqrt{10} \\
\end{array}
$$

Now change the Input/Output setting to MathI/MathO, and check it works, by doing the following:
\rightleftharpoons to select Calc Settings \rangle,
(OK) to select Input/Output \rangle,
(OK) to select MathI/MathO.

QHethI/Heth0

oHathI/Decimalo
OLineI/Line0
oLineI/Decimalo
(OK) to choose the MathI/MathO setting.

OHathI/Hath0

OHathI/Decimal0
oLineI/LineO
oLineI/Decimal0
(AC) to return to the calculation screen.

Enter:

You can see the mixed number form of $\frac{28}{3}$ by pressing:
(EXE)
(V) (V)
(V)
to select Mixed Fraction

Enter:
(1) (2) (>)
©
(1a) (1) (0)
(EXE)

$2 \sqrt{5}$

2.2 Displaying decimals - Fix and Norm

Set your calculator to MathI/DecimalO, so outputs are displayed in Decimal form. See section 2.1.

Many of the calculations you do will require a decimal approximation for a quantity. For example, suppose a cylindrical oil tank is to be made for a racing car. The tank has base radius of 6 cm , height of 20 cm and is made of aluminium.

Calculate the area of the circular base of the tank, and its volume, correct to 2 decimal places.

We know that $A_{c}=\pi r^{2}$ So in this case $A_{c}=\pi \times 6^{2}$

$$
\begin{aligned}
& =36 \pi \\
& \approx 108 \mathrm{~cm}^{2} \text { (estimated mentally) }
\end{aligned}
$$

Let's use the calculator to gain a little more accuracy.
From the (a) screen, launch the $\frac{(a) l}{\text { Caldate }}$ application.

36π

113.0973355
(3) 6
(1) then (7) (to access (π))

Note that 10 digits are displayed.
We require 2 decimal place accuracy.
So, the area is $113.10 \mathrm{~cm}^{2}$.
We could set the calculator to display the answer to this level of accuracy automatically.

This can be done in the SETTINGS menu.
Press:

(v) ((Ok) to choose two-decimal place accuracy.

(AC) (ExC) to re-calculate the result.
Note that in this setting the result is rounded correct to 2 decimal places, not truncated.

Most importantly though, Fix is a display feature, the calculator has still stored the 10 digit value.

To calculate the volume, we do not want to use the rounded figure. We want to use the most accurate value we have - the one with all the decimal places.

We can use the answer memory to our advantage:
(Ans) \otimes
(2) (0)
(EXE)

which gives us the volume of the tank, $2261.95 \mathrm{~cm}^{3}$ rounded to two decimal places.

Note that 113.10 was not used in the calculation, 113.0973355 was, since
$113.10 \times 20=2262$.
We can display more digits using the Fix option again.
2261.94671

There are a series of different settings you can choose with respect to the display of numbers.
Press:

OFix	:5
OSci	
ONorm	

(0k) to see the options.

To return to the default setting, Norm2, press:

(01) to see the options.

Norm1:1.23×10 ${ }^{-3}$

Norm2:0.00123
(V) (OK) to choose Norm2.

(AC) to return to the calculation screen.
(EXE) to recalculate.

```
36\pi0}\times2
2261.946711
```

For general calculations there are two Norm settings, Norm1 and Norm2.
One difference between them is that Norm1 displays positive numbers smaller than 0.01 in scientific notation, whereas Norm2 displays positive numbers smaller than 0.000000001 in scientific notation.

For most purposes Norm2 is the most useful display, and is the factory setting (restored upon initialisation).

Unless otherwise stated, Norm2 is the setting used in calculations from this point onwards.

2.3 Entering and simplifying fractions

Set your calculator to MathI/MathO, so outputs are displayed in Standard form. See section 2.1.

The fraction $\frac{51}{68}$ can be thought of as 51 parts of 68 equal parts of some whole. Is there a simpler way to think about this fraction?

From the (0) screen, launch the Calculate application.

Enter (5) (1) then (음.
Note that a fraction template appears and the cursor is flashing in the denominator waiting for you to enter the 68.

$\frac{51}{68}$		

Enter (6) (8) and then press EXE).
3 The calculator simplifies the fraction, dividing
4 numerator and denominator by 17.
Do you know your 17 times table?
Simplify $\frac{867}{68}$.

To see the decimal form of this result press:

To see the result as a mixed number, press:

2.4 Fractions and decimals

A fraction is the exact value of a quantity. For example, we know that $\frac{6}{33}+\frac{5}{33}$ is exactly equal to $\frac{11}{33}=\frac{1}{3}$ and that the decimal 0.333 (correct to 3 decimal places) is an approximation for $\frac{1}{3}$.
Let's see how the fx- 8200 AU deals with fraction calculations.
Calculate $\frac{6}{33}+\frac{5}{33}$ on the calculator. The fraction key will be used for entry.

Enter (6) then 음.
Note that the fraction appears and the cursor is flashing in the denominator waiting for you to enter the 33.

6
331

Enter (3) (3).
Note that the cursor is still in the denominator and we need it to be outside and to the right of the fraction to continue.

$\begin{array}{\|c\|} \hline 6 \\ \hline 63 \\ \hline 60 \\ \hline 0 \end{array}$

Press \geqslant to position the cursor as shown.

$\frac{6}{33}+\frac{5}{33}$	
0.3333333333	

To get the decimal form of the answer, press \uparrow then (to access \approx).

$\frac{6}{33}+\frac{5}{33}$	
	$\frac{1}{3}$

Press EXE again to return to the fraction.

Calculate $\frac{12}{2584}+\frac{11}{574}$.

Even in this case, a fractional output is given! This one would be a challenge using mind alone.

Calculate $\frac{12}{2584}+\frac{11}{5748}$.
To do this we can edit the previous calculation, changing 574 to 5748 .

Press (<) and note that the cursor is at the end of the input line.

$\frac{12}{2584}+\frac{11}{5748}$
0.00655767196

Press (<) again and then press (8) © ※xa).
No fraction this time, rather a decimal approximation. Interesting! Why does this happen?
It happens because the calculator has a limit to what it can display as a fraction. The limit is 10 characters made up from the numerator, denominator and the vinculum.

2.5 Fractions and mixed numbers

You have now seen a little of how the calculator works with fractions.
Let's explore some more.
Convert $\frac{217}{15}$ to a mixed number.

217

15
$\frac{217}{15}$
This process simply stores the fraction in the answer memory.
Enter $\frac{217}{15}$ and press (ExE).

To see the result as a mixed number, press:

If you press ㅍxe again, the result will be shown as an improper fraction.

The calculator's default setting is to display an output as a fraction (proper or improper) as opposed to a mixed number. This setting can be changed so the default display is a mixed number.

This can be done in the SETTINGS menu.
Press:
카 to select Calc Settings λ,
(①) (V) $\vee \vee$) to select Fraction Result $>$,
(01) to see the options.
(01) to choose Mixed Fraction.
owixed Fraction ©Improp Fraction

Now enter (2) (5) (4) (2) (1) (8)
Press ©xe for the result to be shown as a mixed number.
olixed Fraction oImprop Fraction

To see $14 \frac{1}{9}$ as an improper fraction, press:
(-6) $\vee \vee \vee$ to select Improper Fraction (0)

$\frac{254}{18}$	
	$\frac{127}{9}$

2.6 Entering mixed numbers

Calculate $1 \frac{3}{5} \times 100$ on the calculator.

Press \uparrow then ${ }^{-}$(to access (믐)).
This enters a mixed number template.
The cursor is flashing in the non-fraction part.

Now calculate $1 \frac{3}{5} \times 105$ and $1 \frac{3}{5} \times 110$.
Press © to position the cursor to the right of 100 and press (5) © \times.

$1 \frac{3}{5} \times 105$
168

Then, © © © (1) (0) EXE.

$1 \frac{3}{5} \times 110$	
	176

Can you predict what $1 \frac{3}{5} \times 115$ will be? What about $1 \frac{3}{5} \times 120$?
Can you explain why this works?
If $2 \frac{3}{5} \times 100=260$, what do you think $2 \frac{3}{5} \times 105$ equals? Check it out.

2.7 Letter memories

Look at the nine keys on the bottom-left of the keyboard.
A little above-left of each key you will see a blue letter.
Each letter, A, B, C, D, E, F, x, y and z, can take the place of a previously stored numerical value in a calculation.

From the HOME (©) screen, launch the Calculate application by selecting $x_{1}{ }^{2}$
Calculate and pressing (exe).

Press (20) (VARIABLE).

You can see the default situation is that the stored value for each letter is 0 .

Press (1) (5), to prepare to store $\sqrt{5}$ as the value of A .

Press 창 to store the value and return to the memory list.

To store $\sqrt{10}$ as the value of B, press:

To calculate $\mathrm{A} \times \mathrm{B}$, press:
(AC)
(1) (4)
$A \times B$
$5 \sqrt{2}$
©
(1) (5)
(EXE)

In the rectangular prism below, M is the midpoint of GF, N is the midpoint of HE and O is the midpoint of BD . Dimensions are measured in metres.

What is the difference between the size of angle NBO and the size of angle MBN?
Provide your answer correct to 4 decimal places.

Angle BON and angle BNM are right angles, so both the grey triangle and the green triangle are right-angled triangles. Therefore, we can use trigonometric ratios and Pythagoras' Theorem to answer this question.

We should not round the interim answers that we calculate before calculating the difference that is required. Otherwise, a rounding error may occur. We can use the memories to help us be accurate.

To find the size of angle NBO press:
(1) (tan) (5)
븜
(6) EXE)

Note: If brackets are not mathematically required, they can | $\tan ^{-1}\left(\frac{5}{6}\right.$ |
| ---: |
| 39.80557109 | be left out.

To store this value as A press:
(2x) (Ans) ExE

$\mathrm{A}=39.805571$	$\mathrm{~B}=\mathrm{J}(10)$
$\mathrm{C}=0$	$\mathrm{D}=0$
$\mathrm{E}=0$	$\mathrm{~F}=0$
$x=0$	$y=0$
$z=0$	

To find the length of BN , press:
AC)
(15) (6) ${ }^{2}$ \oplus (5) © ${ }^{2}$ EXE

To find the size of angle MBN press:
(1) (tan) (4)

(ns) EXE

$\tan ^{-1}\left(\frac{4}{\text { Ans }}\right.$
27.11914277

To calculate the difference between the angles press:
(1) (4) -
(Ans) EXE)

So, the answer required is 12.6864°.

3.1 Powers

What is a power of 5 ?
125 is a power of 5 . It is actually the 3 rd power of 5 because $5 \times 5 \times 5=125$ or 5^{3} (pronounced ' 5 to the 3^{\prime}) $=125$.

When we write $5^{3}=125$, the number 5 is called the base and 3 is called the exponent (also known as a logarithm).
$2^{6}=64$. So, we say 64 is the 6 th power of 2 .
Calculate the following:
a) the $8^{\text {th }}$ power of 3
c) 4^{6}
e) 7^{7}
b) the $4^{\text {th }}$ power of 9
d) 16^{3}
f) 7×49^{3}

$3^{86 \pi}$

(3)
(8)
(EXE)

(9)
(4)

What? $3^{8}=9^{4}$, how can that be?

(4)
(6)
(EXE)

(1) (6) (1) (3) © ExE

What? $4^{6}=16^{3}$, how can that be?

(7) © (7)

(7) ${ }^{\otimes}$
(4) (9)
(3) ©XE

What? $7^{7}=7 \times 49^{3}$, how can that be?
823543 Is $2^{20}=4 \times 8^{6}$? If so, try to work out why.

A famous tale tells that the inventor of Chess made his king so happy he was offered a prize of his naming for the work he had done. He asked for 1 grain of wheat for the first square of the board and then double that for the second and double that for the third and ...
Let's calculate the amount for each square.

Start by entering (1) and pressing (ExE).
This stores 1 in the answer memory.

Now press \otimes (2) (ExE).

Now press 츨.
You can see we now have a recursive process going.

I have pressed it quite a few times in the screen opposite.

Ans $\times 2$

67108864
If you forget how many presses you have made, you can press the \star arrow to go backwards and then use the \vee to go forwards.

The screen opposite shows how many grains I think he got for the $60^{\text {th }}$ square; do you agree?
Note that $5.764607523 \times 10^{17}$ means
5764607523???????? (the ?s are unknown digits).
The decimal point is moved 17 places to the right.
This calculator can display no more than 10 digits.

How many wheat grains in total would he have had? See if you can find out how to work that out. (There are 64 squares on a chess board.)

3.2 Square roots and other roots

I bet you have heard of a square root, e.g. $\sqrt{64}=8$.
The square root of a number, k, is the positive number, j, which when multiplied by itself, gives the number k. If j is an integer, then k is called a perfect square.

If $k=25$, then $j=5$. But if $k=26$, what will j equal?
As well as square roots there are cubed roots, $4^{\text {th }}$ roots, $5^{\text {th }}$ roots, $\ldots \ldots$.. $n^{\text {th }}$ roots.
Calculate the value of each of the following:
a) $\sqrt{649536196}$
b) $\sqrt{10001}$
c) $\sqrt{18}$
d) $\sqrt{100 \times 31}$
e) $\sqrt{64 \times 10001}$
f) $\sqrt[3]{64}$

From the (-) screen, launch the Calculate application.

25486

So, 649536196 is a perfect square. I bet you did not know that!

$\sqrt{100} \sqrt{1001}$

So close to a perfect square, but not close enough.
Numbers like $\sqrt{10001}$ are called surds.

The surd, $\sqrt{18}$, has been simplified.
If k has a perfect square factor, 9 in this case, the surd can be simplified.

$\sqrt{180}$	
	4.242640687

To calculate the decimal approximation of $\sqrt{18}$, press © then (exE (to access \approx).

$\sqrt{\sqrt{100} \times 0 \times 31}$

(1)
(1) (0) (0) © (3) (1)

EXE)
So $\sqrt{3100}=10 \sqrt{31}$.

$\sqrt{64 \times 10001}$
800.039999

(6) (4) \otimes (1) (0) (0) (0) (1)
(EXE)

The calculator cannot simplify all surds that can be simplified.
$\sqrt{640064}=8 \sqrt{10001}$, but the calculator does not know this, and so returns a decimal approximation.

If k is too large, a decimal approximation will be returned. How large is too large?
See if you can find out.

(1) (1) - to enter ($\sqrt{5}$)
(6) (4)
(EXE)

64 is not only a perfect square, but a perfect cube as well. Is it a perfect anything else?

3.3 Square roots - Pythagoras

Suppose we need to determine the lengths of the currently unknown sides in the construction shown below. We could begin as follows:

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
\Rightarrow 21^{2} & =16^{2}+x^{2} \\
\Rightarrow x & =\sqrt{21^{2}-16^{2}} \\
y^{2} & =20^{2}+x^{2} \\
\Rightarrow y & =\sqrt{20^{2}+x^{2}}
\end{aligned}
$$

To determine the values of x and y, we can do the following.
From the (a) screen, launch the calculate application.

$\sqrt{21^{2}-16^{2}}$	

We can also calculate a decimal approximation for x.
Press © then ExE (to access \approx).

The output is stored in the answer memory and so we can use it to calculate the value of y.

$\sqrt{20^{2}+A n s^{2}}$ 24.18677324

To calculate a decimal approximation for y, press (1) then ExE (to access \approx).

So, we know that $x=\sqrt{185} \mathrm{~m} \approx 13.6 \mathrm{~m}$ and that $y=3 \sqrt{65} \mathrm{~m} \approx 24.2 \mathrm{~m}$ (correct to 1 decimal place).

3.4 A financial calculation

Suppose we wish to calculate the value of an investment of $\$ 8000$, five years after investing it in an account that pays interest of 3.4% p.a. compounded monthly. We can use the formula:

$$
A=P\left(1+\frac{r}{100}\right)^{n}
$$

Calculate $8000\left(1+\frac{0.034}{12}\right)^{60}$ on your calculator.
From the (a) screen, launch the calulate application.
$8000\left(1+\frac{0.034}{12}\right)^{60}$
(8) (0) (0) (0)
(1) (1) \oplus
(0) (0) (3) (4) (
(-1) (6)

$8000\left(1+\frac{0.034}{12}\right)^{60}$
9480.159702

(Ex)

It is possible to set the calculator to display the result correct to two decimal places.
This can be done in the SETTINGS menu.
Press:

; to select Calc Settings \downarrow,

(®1) (V) (v) to select Number Format $>$,
(01) to select OFix \downarrow,

Fixall.
Fix1:0.1
(01) to see the options.

Fix2:0.12
Fix3:0.123
(V) (ㄷ) to choose two-decimal place accuracy.

(AC) (Ex) to re-calculate the result.

Note: Now set your calculator to Norm 2.
You can learn more about the Norm display setting in
 section 2.2.

3.5 Logarithms

In section 3.1 we looked at powers.
For example, since $64=2^{6}$, we say that 64 is the $6^{\text {th }}$ power of 2 .
Do you recall the name given to the number 6, in the equality $64=2^{6}$?
It is called a logarithm. (It is also called an index or an exponent.)
Consider the equation $5^{x}=124$. What is the value of x ?
x is the value to which 5 is raised to get 124 .
You probably know $x \approx 3$. Actually, a little less than 3 .

To be precise $x=\log _{5}(124)$, the decimal approximation of which can calculated as follows.

From the (a) screen, launch the Calculate application.

$\log _{5}(124)$	$\underset{\text { (EXE) }}{\text { (10.0) }}$ (5) ($>$ (1) (2) (4)
2.995009331	Just under 3, as expected

Predict the value of each of the following and then calculate them to determine the quality of your predictions.
a) $\log _{4}(64)$
b) $\log _{3}(82)$
c) $\log _{2}(256)$
d) $\log _{8}(1)$

What is the value of $\log _{5}\left(5^{100}\right)$?

What is going on here?
Can you explain why $\log _{5}\left(5^{100}\right)=100$?
What do you think $\log _{a}\left(a^{b}\right)$ is equal too?
One last thing before we finish. What do you think $\log _{6}\left(\frac{1}{36}\right)$ is equal to?

4.1 Things to know

When working with data, you need to select the Statistics application. It is also suggested that you set it to display the Frequency of each score.
 application.

In this application, you can work with univariate or bivariate data.

For this task, select 1-Variable and then press (OK) to open the data list.

1-Variable
2-Variable

Note: If a Frequency column is showing on your
 calculator, you do not need to proceed.

To display the Frequency column, press

Frequency

oOn

Press ©K to turn the Frequency setting on.

Now press (AC) to return to the data lists.

How many rows of data can be entered?
This is dependant on the number of columns displayed in the Statstics editor.
One column (single variable, x) $=160$ rows.
Two columns (single variable, $x+$ Freq) or (paired variable data x, y) $=80$ rows.
Three columns (paired variable data $\mathrm{x}, \mathrm{y}+$ Freq) $=53$ rows.

4.2 Entering, editing and deleting data

Before doing this section, be sure you have carried out the directions in the previous section.

Below are the weights (in grams) of the last 10 tomatoes I picked.

$$
54,68,45,55,64,80,52,63,72,71
$$

Enter these data into the Statistics application of your calculator.

Select 1-Variable and then press
(0K) to open the data list.

Note 1:
You may be asked if you wish to clear data. This will happen if you have data in the 2-Variable section. You must choose Yes if you want to proceed.
Note 2:
If data already exists in the lists, delete it - see the instructions on the bottom of page 29.
Note 3:
See Section 4.1 if you do not have a Freq(uency) column.

You are now ready to enter the data.
(5) (4)
EXE

Pressing ext 'enters' 54 with a frequency of 1 (in this case meaning it appears just once in our data).

Enter the rest of the data.
If you make an error, as I have with data point 9 , simply scroll to it, type it again and press (EXE).

Alternatively, you can clear a row by selecting it and pressing

A row can be inserted in the place of the row selected.
Select row 9 and then press:

Data can also be sorted in ascending or descending order, by the variable or frequency column.

Press:

The data will then be displayed in the method selected.

Note: Once the data has been sorted, it cannot be returned To the order in which it was entered.

To clear/delete all the data previously entered, press:

4.3 Five number summary

Before doing this section, be sure you have carried out the directions in the two previous sections.

I set my toaster to the 'number 1' setting and then measured how long it took to pop. I did this 16 times, letting it cool down in between measurements. The measurements (in seconds) are given below.

$$
\text { 94, 96, 96, 96, 98, 98, 99, 99, 96, 97, 127, 96, 99, 96, 99, } 96 .
$$

Find the five number summary for these data (minimum value, $1^{\text {st }}$ quartile, median, $3^{\text {rd }}$ quartile and maximum value).

For this example, we have a single variable, time, so select 1-Variable and then press
(01) to open the data list.

You are now ready to enter the data.
(9) (4)
(EXE)

Enter all 16 data points.
Note: I am choosing to enter every data point as an individual and so the frequency of each will be one, even
 though some values (like 96) occur seven times.

Check all the data is correct by scrolling up and down $(\star), ~()$. Edit if required.

Press (0K) when data entry is complete.

1-Var Results Statistics Calc

To display the summary statistics, select 1-Var Results and then press (OK).
 three screens.

Use the $(\mathbb{\wedge}, ~(\checkmark$ to toggle between them.

From these statistics a boxplot can be drawn, by hand.

4.4 Mean and standard deviation

Before doing this section, be sure you have carried out the direction in sections 4.1 and 4.2.

A candle shop makes a certain type of candle called large-scented. Each candle is to have a label displaying how long the candle is expected to burn. To determine the expected time, a sample of 15 candles are burned and the number of hours that each burned for (rounded to the nearest hour) is recorded. The data is given below in the form of a dot plot.

Calculate the sample mean (\bar{x}) and the sample standard deviation (s).

For this example, we have a single variable, time, so select 1-Variable and then press
(OK) to open the data lists.

You are now ready to enter the data.
(9) (4)
(EXE)

..

Enter all nine scores from the dotplot and change the frequency value as required.
For example, we have two scores of 100 and so after entering 100 press:

(>)
(A)
(2) EXE).

Check all the data is correct by scrolling up and down $(\star), ~ \vee)$. Edit if required.

Press (06) when data entry is complete.

1-Var Results

Statistics Calc

The results for the mean ($\overline{\mathrm{x}}$) and standard deviation (sx) will appear over two screens.

Use the \triangle and \otimes to toggle between them.

4.5 Linear Regression

In 1948 General Motors Holden (GMH) made the first Holden, while continuing to also assemble other makes of cars. From this time onwards, GMH decreased the assembly of non-Holden cars, as the production of Holden cars increased.

The table below shows the number of non-Holden cars (N thousands) assembled in each year from 1948 to 1959. In the table, year 1 represents 1948.

Year	1	2	3	4	5	6	7	8	9	10	11	12
N	25.2	22.2	23.9	20.3	15.4	14.4	19.3	20.6	15.1	10.9	13.8	13.2

a) Find the slope of the least squares regression line.
b) Use the equation to predict how many non-Holden cars would have been made, if the trend seen above continued, in 1974. From the (0) screen, launch the $\frac{\mid \text { |hth }}{\text { Statistics }}$ application.

1-Variable
 2-Variable

Note 1:

You may be asked if you wish to clear data. This will happen if you have data in the 1 -Variable section. You must choose Yes proceed.
Note 2:
If data already exists in the lists, delete it - see section
4.2.

Note 3:
See section 4.1 if your calculator does not have a Freq(uency) column displayed.

Enter the data.

Once entered and checked, press © ©

To find the slope and y-intercept of the least squares regression line, press:

Therefore, the equation of the least squares line is $N \approx-1.06 \times$ year +24.77
To prepare to do a statistical calculation using the slope and y-intercept, press:
(5) to return to the data lists,

(®1) to select $\mathbf{y}=\mathbf{a}+\mathbf{b} \mathbf{x}$
(01) to open the statistics calculation screen.

To calculate the predicted number of non-holdens made in 1974, the values of a and b can be found in the CATALOG.

Press:

Enter $a+27 \times b$ and press (06).

Note: To enter b, repeat the steps above.
-3.939044289

Alternatively, the \hat{y} shortcut can be used.
Oh, a negative number of cars.
I guess the trend did not continue!
-3.939044289

4.6 Random numbers

From the (0) screen, launch the Calculate application.

Check that your calculator is set to
MathI/DecimalO. See section 2.1.

OHathI/HathO GHathI/Decimal0 OLineI/Line0 OLineI/Decimalo

Press:
(①) (V) to select Probability
(OK) © \triangle to select Random Number $>$
(OK) (OK)
This function produces pseudo-random numbers between 0 and 1 (with three decimal places).
Press (OK) a few more times to see more of them.

(1) (0) (0) (0) ®
(1) (V) to select Probability
(OK) (\triangle to select Random Number \downarrow
(OK) (OK)
Pseudo-random numbers between 0 and 1000 are produced.
Press (OK) a few more times to see more of them.

159

To produce pseudo-random numbers between 1 and 6 inclusive.
Press:

On the screen right, I am calculating the product of two pseudo-random numbers between 1 and 10 inclusive.

If we keep pressing exe continually, will square numbers be common or uncommon? Why?

fx-8200 AU at a glance

Here is a refresher of the key functions of the fx-8200 AU.

5.1 Degrees, minutes and seconds

Set your calculator to MathI/MathO. See section 2.1.
One revolution can be broken up into 360 equal turns, each called 1 degree (1°).
What does a 90° angle look like?
What does a 1° angle look like?
What if it is less than 1° ?
One degree can be broken up into 60 equal turns (small ones), each called 1 minute (1^{\prime}).

One minute can be broken up into 60 equal turns (very small ones), each called 1 second (1").

So, 42.5° would be the same as $42^{\circ} 30^{\prime} 0^{\prime \prime}$ and $42.125^{\circ}\left(42 \frac{1}{8}^{\circ}\right)$ would be the same as $42^{\circ} 7^{\prime} 30^{\prime \prime}$ (as $60 \div 8=7.5$) - phew!

Convert each of the following into degrees, minutes and seconds.
a) 36.5°
b) 36.6°
c) 36.25°

From the (©) screen, launch the Calculate application.
Before starting we need to be sure that the calculator is set to work in degrees. If you can see a small D at top of screen, then it is. If not, do the following:

odegree
oRadian
oGradian
\rightleftharpoons to select Calc Settings $>$,
(OK) \vee to select Angle Unit \rangle,
(OK) to see the options,
(0K) to choose the angle setting to be Degree.

36.5°	
	$36^{\circ} 30^{\prime} 0 "$

(3) (6) $\odot(5)$
(1) then $\oplus($ to enter $(\circ, \cdots))$
(EXE)

36.6°	
	$36^{\circ} 36^{\prime} 0 "$

(3) (6) (6)
(1) then $\oplus(\circ, \cdot \prime)$
(EXE)

36.25°	
	$36^{\circ} 15 \cdot 0 "$

(3) (6) © (2) (5)
(1) then $\oplus(\circ \cdot \cdots)$
(EXE)

Consider the reverse process, converting an angle represented in degrees, minutes and seconds to decimal form (or even fractional form).

What would $100^{\circ} 6^{\prime} 30^{\prime \prime}$ be in decimal form?
Convert each of the following decimal form.
a) $100^{\circ} 6^{\prime} 30^{\prime \prime}$
b) $34^{\circ} 20^{\prime} 20^{\prime \prime}$
c) $51^{\circ} 28^{\prime} 38^{\prime \prime}$

$100^{\circ} 6^{\circ} 30^{\circ}$
100.1083333

(1) (0) (0)
(1) then $\oplus(\circ \cdot \cdots)$
(6)
(1) then $\oplus(\circ \cdot \cdots)$
(3) (0)
(1) then $\oplus(\circ, \cdots)$
(1) then © ©xe (\approx)

(3) (4) $\uparrow \oplus(0 \cdot \cdots)$
(2) (0) $\uparrow \oplus(0 \cdot \cdots)$
(2) (0) $\uparrow \oplus(0 \cdot \cdots)$
(1) then © Exe (\approx)

Did you predict that? It is $34+\frac{20}{60}+\frac{20}{3600}$. Check it.

$51^{\circ} 28^{\circ} 38^{\circ}$
51.47722222

The angle given in part c) is the longitude measure of Greenwich. Why is Greenwich important?

5.2 Trigonometric calculations

Set your calculator to MathI/MathO. See section 2.1.
Suppose you are required to find the size of the angles (expressed in degrees minutes and seconds) in a right-angled triangle with perpendicular legs of length 5 cm and 7 cm . We could begin as follows:

$$
\begin{aligned}
\tan (\theta) & =\frac{5}{7} \\
\theta & =\tan ^{-1}\left(\frac{5}{7}\right) \\
\theta & =\ldots
\end{aligned}
$$

To calculate the value of θ :

First ensure the calculator is set in Degrees.
If it is not, then:
(OK) to select Talc Settings \vee to select Angle Unit
(OK) to see the options,
(OK) to choose the angle setting to be Degree.
(AC)
Then:
(1) (tan) $\left(\right.$ to enter $\left(\tan ^{-1}\right)$)
(5) (7 ($)$ (1)
(1) then $\oplus($ to enter $(\circ, \cdots))$
(XE)

$54^{\circ} 27^{\prime} 44.36^{\prime \prime}$

To calculate the other unknown angle:
(1) (1) 8) (0) -
(9) (0)(Ans) (D)
(1) then $\oplus($ to enter $(\circ, \cdots))$
(XE)

What is the area of an equilateral triangle with side length 1.25 cm ?

$\frac{1}{2} \times 1.25^{2} \times \sin (60)$
$\frac{25 \sqrt{3}}{64}$

(1)

$\frac{1}{2} \times 1.25^{2} \times \sin (60)$
0.6765823467

To see the decimal approximation for $\frac{25 \sqrt{3}}{64} \mathrm{~cm}^{2}$, press (1) then © xE (\approx).

Solve the equation $\sin (3 x)=\frac{\sqrt{3}}{2}$ for $0^{c}<x<\pi^{c}$

First ensure the calculator is set in Radians.
If it is not, then:

to select Calc Settings \rangle,

(OK) \vee to select Angle Unit \rangle,
(OK) to see the options,
(V) (OK) to choose the angle setting to be Radian.
(AC)
Then:
(1) Sin $\left(\right.$ to enter $\left.\left(\sin ^{-1}\right)\right)$

So,

$$
3 x=\frac{\pi}{3} \pm 2 k \pi \text { or } 3 x=\frac{2 \pi}{3} \pm 2 k \pi
$$

Therefore,

$$
x=\frac{\pi}{9} \pm \frac{2 k \pi}{3} \text { or } x=\frac{2 \pi}{9} \pm \frac{2 k \pi}{3}
$$

To find more solutions, we can add or subtract multiples of $\frac{2 \pi}{3}$.

Convince yourself that $\sin (3 x)=\frac{\sqrt{3}}{2}$ for $0^{c}<x<\pi^{c}$, has four solutions.

5.3 Scientific notation and ENG notation

Numbers can be expressed in scientific notation, correct to 3 significant figures, by setting the calculator to display values in that way.

Press:
<compat>ᄋ<compat>ᅲ to select Call Settings \downarrow,
(ok) (V) (V) to select Number Format $>$,
(<compat>ᄄ<compat>ᅡ) (V) to select Sci
∇,
(01) to see the options.

Sci 1 : $1 \times 1{ }^{-5}$

Sci :1.2×10
Sci :1.23 $\times 10^{-1}$
Sci :1.234×10
(V) (ㄷ) to choose three significant figures.
(AC) to return to the calculation screen.

(1) (2) (4) (5) (8)
(EKE)

247×0.000124
3.06×10^{-2}

Enter this example.
(2) (4) (7) \times
(0) \odot
(0) (0)
(0) (1)
(2) (4)
(EKE)

(2)
(3) (5) (6)
(10)
*
(7) (2) (1) (4) (5)
(EKE)
(8) $\left.{ }^{(}\right)$

With the previous calculation active, press
(1.) (v (v) to select ENG Notation
(01) to return to the calculation screen.

Press \geqslant multiple times.

sol
$2.356 \times 10^{8} \times 7.2145$
1700000×10^{35}

What does it do?
Press () to go backwards.
Press (AC) to cancel ENG notation mode.
Now set your calculator back to Norm 2.

5.4 Radians to degrees

To convert an angle in radians to degrees, set the calculator to compute in degrees.

ODegree	to select Calc Settings
ORadian OGradian	OK $)$ to select Angle Unit
	(OK) to see the options,
	(AC) to return to the calculation screen.

Convert $\frac{\pi c}{5}$ to degrees.

The Angle/Coord/Sexa $>$ menu options can be useful when used in an input, as they over-ride the angle unit setting of the calculator. For example, suppose we want to calculate $\cos \left(\frac{\pi^{c}}{8}\right)$. We can do this without having to change the calculator's angle setting to radians by ensuring the ' r ' is added to the end of the input as shown below.

$\cos \left(\frac{\pi}{8} r\right)$
0.9238795325

Note: Both ${ }^{\mathrm{c}}$ and ${ }^{\mathrm{r}}$ can be used to denote radians, as can rad.

6.1 Lowest common multiple (LCM)

Both the hot water tap and cold water tap in my sink are leaking; drip, drip, drip, drip, drip, drip, drip, drip, ... and so on.
Every now and again I hear what sounds like a single big DRIP.
I figured out that the hot water tap drips every 8 seconds and the cold water every 14 seconds. How often do I hear the single big drip (i.e., when are they in sync)?

We could make two lists:
hot: $8,16,24,32,40,48,56, \ldots$
cold: $14,28,42,56,70, \ldots$
So, if the taps started dripping in unison I would hear the single big drip after 56 seconds and every 56 seconds after that, with 9 drips in between DRIPs.

56 is called the lowest common multiple (LCM) of 8 and 14.
The calculator is able to calculate the LCM of two integers.
Find the LCM of 8 and 14.
$\mathrm{LCH}(8,14)$
(4) \vee (V) to select Numeric Calc
(OK) \vee to select LCM
(OK)
(8)
(1) (9)
(1) (4)
(EXE)

The calculator agrees with my table!
Find the LCM of 8 and 15.

Note that $8 \times 15=120$. However $8 \times 14 \neq 56$. Try to explain this observation.
What must be true for the LCM of two integers, a and b, to be equal to the product $a b$?

Things I learnt about my fx-8200 AU ...

\qquad

6.2 Greatest common divisor (GCD)

Consider the numbers 20 and 36 .
20 can be found in the 1 -times table, 2 -times table, 4 -times table, 5 -times table, 10 -times table and of course the 20 -times table. Another way of saying this is that 20 is divisible by 1,20 is divisible by $2, \ldots$
Divisible means divides with no remainder.
36 is divisible by $1,2,3, \ldots$
What is the largest number that will divide into, with no remainder, 20 and 36 ?
This number is called the greatest common divisor, or GCD, of 20 and 36 .
We can make two lists and compare:
20 is divisible by $1,2,4,5,10$ and 20 .
36 is divisible by $1,2,3,4,6,9,12,18$ and 36 .
So 4 is the GCD of 20 and 36 . Does the calculator agree?
Find the GCD of 20 and 36.

We have agreement!
Suppose we have a single rectangular block of land 120 m wide and 1000 m long and we want to divide it into identical square blocks. If the squares have integer dimensions, what is the size of the largest squares that can be used?

So a square 40 m by 40 m is the largest that can be used.

What is the GCD of 121 and $1003 ?$

1 !
So, there is no integer apart from 1 that will divide, with no remainder, 121 and 1003.

Such pairs of numbers are called co-prime, or relatively prime.
Does that mean 1003 is prime? 121 is clearly not as $11 \times 11=121$.
Find the product of the GCD and LCM of 6 and 15.

So $\operatorname{GCD}(6,15) \times \operatorname{LCM}(6,15)=90$.
Note also that $6 \times 15=90$.
Coincidence? Try some more cases.

If you cannot find a counter example, try to reason why:

$$
\operatorname{GCD}(a, b) \times \operatorname{LCM}(a, b)=a b, \text { where } a, b \in Z
$$

6.3 Prime factorisation

Is 1003 prime?
To find out we could start checking to see if the integers between 1 and $\sqrt{1003}$ divide 1003 with no remainder.

Clearly we can ignore all the even numbers, and since the digit sum is 4 then 3 will not work, nor 5 , how about $7, \ldots$

The calculator is able to very efficiently perform a process similar to that started above and return the number written as a product of its prime factors.

Prime factorise 1003.

(1) (0) (0) (3)
(EXE)
 to select

Prime Factor

So 1003 is not prime, it is divisible by 17 and 59 (as well as 1 and 1003).
Try and find the biggest prime you can in 60 seconds.
See if you can find one bigger than me:
124587539
(124587539)

36 has 9 divisors (or factors): 1, 2, 3, 4, 6, 9, 12, 18 and 36.
How can you determine this fact from its prime factorisation?
Below you can see the prime factorisation of 36 - I will leave it to you to think about. Try some other examples.

36	
	$\mathbf{2}^{2} \times 3^{2}$

6.4 Verifying equality

Verify mode allows you to check whether or not different numerical forms, or algebraic expressions, are equal.
It is a useful mode for testing out your knowledge of various mathematical ideas/processes.
One 'fraction' example is shown right.
$\frac{1}{3}=0.333=33 \frac{1}{3} \%$
False

To enable Verify mode, press:

(o) (V) to select Verify ON

(01) to turn Verify on and return to the calculation screen.

You will notice the at the top of the screen.
This indicates that Verify is on.
When Verify is on, you cannot calculate in a typical manner, you are locked out of that.

The number $4 \sqrt{5}$ can be written in many different forms. What is $4 \sqrt{5}$ when written in the form \sqrt{k} where k is a whole number?

I think it is $\sqrt{20}$; is that true? Let's verify.

False!
See if you can figure out the correct answer and get the calculator to return True. Try some more examples.

Can you write down the correct decimal form and percentage form of $\frac{1}{8}$?
I think $\frac{1}{8}=0.125=12.5 \%$; is that true? Let's verify.

Success!

Is $0.1 \dot{6}=\frac{1}{6}$?
To enter a number in recurring decimal form, like $0.1 \dot{6}$, and verify whether it is $\frac{1}{6}$, press:

Try some more fraction/decimal form/percentage form examples.
Can you write down a factorised form of $30 x+18$?
Check your answer using Verify mode.
I think that $30 x+18=2(15 x+9)$; is that true? Let's verify.
(3) (0) ©
(1) (8) (1) (1) $=)$

(2) (1) (1) (5) \times
(7) (9) (1)
(EXE)
Success!
However, now that I think about it a little more, I do not think $2(15 x+9)$ is fully factorised.

Try to find a different expression that is also a factored form of $30 x+18$, try for the fully factorised form.

There are many factorised forms of $30 x+18$, but only one that is fully factorised.
The one shown to the right is not considered fully factorised.

When the calculator verifies the truth of an algebraic expression, it is only verifying it for one numerical value of x. The value of x in its memory. To see that value, and change it, press the VARIABLE key, (2a).

It is wise to think carefully about the value(s) of x you choose to verify an algebraic equality, before concluding that the algebraic expressions are equal in general.

6.5 Summation

Set your calculator to MathI/MathO. See section 2.1.
The concept of summation is the adding up of a sequence of numbers, where the sequence obeys a rule.

Consider following:

- $\frac{1}{4}$
- $\frac{1}{4}+\left(\frac{1}{4} \times \frac{1}{4}\right)$
- $\frac{1}{4}+\left(\frac{1}{4} \times \frac{1}{4}\right)+\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right)$

Each of these are consecutive steps in the sum of a sequence of numbers. At each step we add on one more number, and we keep doing this forever.
Given the rule is that the next number is one-quarter of the previous, then the never-ending summation, S_{n}, can be written as follows:

$$
S_{n}=\frac{1}{4}+\left(\frac{1}{4} \times \frac{1}{4}\right)+\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right)+\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right)+\cdots+\frac{1}{4^{n}}
$$

where n is a positive whole number.
The value of S_{2} can be calculated as follows:

The decimal form can also be calculated.
(1) then $\mathrm{ExE}(\approx)$

$\frac{1506}{4}+\frac{1}{4^{2}}$ 0.3125	

Complete the following table for $1 \leq n \leq 6$.

n	1	2	3	4	5	6
$\left(S_{n}\right)$ (fractional form)	$\frac{1}{4}$	$\frac{5}{16}$				
S_{n} (decimal form)	0.25	0.3125				

What do you notice?

There is a more efficient way to calculate the value of a given number of steps of a summation using this calculator.
S_{6} can be calculated as follows.
(1) to select Func Analysis $\boldsymbol{\downarrow}$
(®) to select Summation(Σ)
(01)
(1) 믐 (x
(v) (1) (6)
(1) then EXE (\approx)

To calculate further steps in this summation press:
$\geqslant \geqslant>$ to move the cursor to the right of the 6 ,
(®) to delete the 6 .

You can now enter any value of n you wish.
Calculate S_{10}, S_{12}, \ldots
Can you suggest what will happen to the value of the sum, S_{n}, as the value of n becomes larger and larger (I.e., as $n \rightarrow \infty$.)?

Can you "fraction-up" the square shown below in a way that would convince another person that as $n \rightarrow \infty, S \rightarrow \frac{1}{3}$?

Calculate some steps in the sum:

$$
S_{5, n}=\frac{1}{5}+\frac{1}{5 \times 5}+\frac{1}{5 \times 5 \times 5}+\cdots+\frac{1}{5^{n}}
$$

What happens to the value of $S_{5, n}$ as $n \rightarrow \infty$?

Calculate some steps in the sum:

$$
S_{6, n}=\frac{1}{6}+\frac{1}{6 \times 6}+\frac{1}{6 \times 6 \times 6}+\cdots+\frac{1}{6^{n}}
$$

What happens to the value of $S_{6, n}$ as $n \rightarrow \infty$?

Calculate some steps in the sum:

$$
S_{7, n}=\frac{1}{7}+\frac{1}{7 \times 7}+\frac{1}{7 \times 7 \times 7}+\cdots+\frac{1}{7^{n}}
$$

What happens to the value of $S_{7, n}$ as $n \rightarrow \infty$?

Consider the sum:

$$
S_{a, n}=\frac{1}{a}+\frac{1}{a \times a}+\frac{1}{a \times a \times a}+\cdots+\frac{1}{a^{n}}
$$

Can you suggest what happens to the value of $S_{a, n}$ as $n \rightarrow \infty$?
Can you prove that your suggestion is correct?
To finish of this section, consider the sum:

$$
S_{n}=1+\frac{2}{3}+\frac{4}{9}+\frac{8}{27}+\cdots+\frac{2^{n-1}}{3^{n-1}}
$$

What happens to the value of S_{n} as $n \rightarrow \infty$?

Note:
Instead of summing a sequence of numbers, one can find their product.
For example,

$$
P_{n}=\frac{7}{9} \times \frac{26}{28} \times \frac{63}{65} \times \frac{124}{126} \times \ldots
$$

The 'product' function (Π) can be used to investigation this critter. Investigate away.

7.1 Making a table of values for a function

Consider the function:

$$
f(x)=\frac{2 x-1}{x}
$$

Make a table of values of $\mathrm{f}(x)$ for $-10 \leq x \leq 10$ and see what you notice.

From the (©) screen, launch the $\frac{\text { 牱 }}{\text { Table }}$ application.

None tells us that there are no functions defined in
 the calculator.

To define $\mathrm{f}(x)$ in the calculator press:
(00) (TOOLS),
(V) to select Define $\mathbf{f}(\boldsymbol{x}) / \mathbf{g}(\boldsymbol{x}) \quad>$,
(OK) to select Define $\mathbf{f}(\boldsymbol{x})$

(OK) 듬 (2) x (1) $\vee \times$ to enter the function.
(ExE) to return to the table.

(00) (TOOLS) to select Table Range
(0K) to see the Table Range settings.

-(1) (0)
EXE
(1) (0) EXE

You are now prepared to calculate values for $\mathrm{f}(x)$ and $\mathrm{g}(x)$ for all integer values (Step $=1$) in the

(V) to select Execute.

(ExE) to see the table.

You can scroll up and down the table using $(\downarrow$ and \wedge.

Notice that when $x=0, \mathrm{f}(x)=\mathrm{ERROR}$.
Can you explain why ERROR is returned?
Also notice that at either ends of the table, $\mathrm{f}(x)$ gets close to 2 .
Is there an x value for which $\mathrm{f}(x)=2$?
Change the table range to $-20 \leq x \leq 10$ and look at the values of $\mathrm{f}(x)$.
Now change the table range to $10 \leq x \leq 20$ and look at the values of $\mathrm{f}(x)$.
Did you find an x value for which $\mathrm{f}(x)=2$?
Mmm.

7.2 Solving an equation using table of values

Consider the functions:

$$
f(x)=x^{2}+2 x+7 \text { and } g(x)=6 x+3
$$

Are there any values of x that return the same value of $\mathrm{f}(x)$ and $\mathrm{g}(x)$?
I.e., are there any values of x for which $\mathrm{f}(x)=\mathrm{g}(x)$?

One way to find an answer to this question is to make a table of values for each function and compare.

From the (0) screen, launch the $\frac{\overline{\mathrm{BE}}}{\frac{\mathrm{Table}}{}}$ application.
If the table on your calculator contains numbers press:

(00) (TOOLS),
(V) \vee (\vee to select Edit

,

(ㅇK) (V) to select Delete All
(0K) to clear the table of numbers.
To define $\mathrm{f}(x)$ in the calculator press:
(๑0) (TOOLS),
(v) to select Define $\mathbf{f}(\boldsymbol{x}) / \mathbf{g}(\boldsymbol{x})$
(0K) to select Define $\mathbf{f}(\boldsymbol{x})$
(01 © ® ® ® ® ® (if you completed 7.1),
(x) $\oplus(2)(x)(7)$ to enter the function.
(ExE) to return to the table.

To define $\mathrm{g}(x)$ press:
(0) (TOOLS),
(v) to select Define $\mathrm{f}(\boldsymbol{x}) / \mathrm{g}(\boldsymbol{x})>$,
(®) (V) to select Define $\mathbf{g}(\boldsymbol{x})$
(01) (6) (x (+ (3) to enter the function.
(ExE) to return to the table.

(5) ext will calculate $\mathrm{f}(5)$ and $\mathrm{g}(5)$.

Clearly $x=5$ is not a value that makes $\mathrm{f}(x)=\mathrm{g}(x)$ true.

Instead of entering one value of x at a time, we can calculate the values of $\mathrm{f}(x)$ and $\mathrm{g}(x)$ for a set of x values.
(0) (TOOLS) to select Table Range
(06) to see the Table Range settings.

Θ
 (1) (0) © (x ec) (1) © ExE

You are now prepared to calculate values for $\mathrm{f}(x)$ and $\mathrm{g}(x)$ for all integer values (Step $=1$) in the interval, $-10 \leq x \leq 10$.

to select Execute.

ExC) to see the table.

You can scroll up and down the table using

(v)

 and \wedge.Note:

You can scroll across the table using (<) and \gg.
So, $x=2$ makes $\mathrm{f}(x)=\mathrm{g}(x)=15$. .
Do you think there might be any other values of x for which $\mathrm{f}(x)=\mathrm{g}(x)$?
You could change the Table Range and explore further, but we could never look at all values of x.
Using an algebraic approach to solve the equation $x^{2}+2 x+7=6 x+3$ will give us all possible values of x for which $\mathrm{f}(x)=\mathrm{g}(x)$.
We will start:

$$
\begin{aligned}
& x^{2}+2 x+7=6 x+3 \\
\Rightarrow & x^{2}-4 x+4=0 \\
\Rightarrow & \ldots
\end{aligned}
$$

Can you finish it off?

7．3 Checking if two algebraic expressions are equal

The expressions $x^{2}+8$ and $\sqrt{x}+8$ are equal in value if $x=0$ ．
But if $x=4$ ，then the expressions are not equal，since $24 \neq 10$ ．
So，$x^{2}+8 \neq \sqrt{x}+8$ for all values of x ．
Ashley believes that when $2 x^{2}+11 x+15$ is factorised，it is equal to $(2 x+5)(x+3)$ ．
Use a table of values to check whether or not Ashley＇s belief is true for more than one value of x ．

One way to begin answering this question is to make a table of values for each function and compare．

百百
 The Table application enables us to do just that．

From the © screen，launch the $\frac{\text { 位河 }}{\text { Table }}$ application．

To define $\mathrm{f}(x)$ press：
©（TOOLS），
（V）to select Define $\mathbf{f}(\boldsymbol{x}) / \mathbf{g}(\boldsymbol{x})$
（0K）to select Define $\mathbf{f}(\boldsymbol{x})$
Enter $2 x^{2}+11 x+15$
ExE）to return to the table．
To define $\mathrm{g}(x)$ press：
（00）（TOOLS），
（v）to select Define $\mathbf{f}(\boldsymbol{x}) / \mathbf{g}(\boldsymbol{x}) \quad$ ，
（ㅇK）（V）to select Define $\mathbf{g}(\boldsymbol{x})$
Enter $(2 x+5)(x+3)$ ．
（ExE）to return to the table．
（00）（TOOLS）to select Table Range
（0K）to see the Table Range settings．

－（1）（0）
ExE）（1）（0）
（EXE）

You are now prepared to calculate values for $\mathrm{f}(x)$ and $\mathrm{g}(x)$ for all integer values（Step $=1$ ）in the interval，$-10 \leq x \leq 10$ ．
to select Execute.

Table Range End :10
 Step : 1
 oExecute

(EXE) to see the table.

You can scroll up and down the table using (\vee and (®).

So, at least for the values of x in this table, $2 x^{2}+11 x+15=(2 x+5)(x+3)$.
But is $2 x^{2}+11 x+15=(2 x+5)(x+3)$ for all values of $x ?$
Use the rectangle below to convince yourself that

$$
2 x^{2}+11 x+15=(2 x+5)(x+3) \text { for all } x
$$

8.1 Factorials

Ashley has four coloured balls and places them in a row as follows: red, yellow, green and blue.

Ashley wonders how many different ways these four balls can be ordered.
Ashley's teacher suggests a tree diagram might help. Ashley created the tree diagram you can see on the next page.

As you can see, the first stage of branches shows what is possible for the first position in the row. There are 4 options for the first position.
For each of these 4 options there are 3 options for the second position.
So, there are 4×3, or 12 , possible ways to fill the first two positions.
There are 2 branches leaving each one of the 12 second position branches. So, there are 12×2, or $4 \times 3 \times 2$, possible ways to fill the first three positions.

The last position can only be filled by the single remaining ball. Thus, there are $4 \times 3 \times 2 \times 1$ different orderings (often called arrangements) of the four balls.

There is a special way to represent products like $4 \times 3 \times 2 \times 1$, products of consecutive numbers all the way down to 1 .

$$
4 \times 3 \times 2 \times 1=4!
$$

4 ! is pronounced four factorial.

$$
\begin{aligned}
10! & =10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \\
n! & =n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1
\end{aligned}
$$

To calculate 10!, you can do the following.
Enter:

So, 10! $=3628000$.

$4 \times 3 \times 2 \times 1$

8.2 Permutations

Ashley was not done with the four balls, wondering how many different arrangements are possible if any 3 balls are chosen from the original set of four.

Ashley's teacher suggests that the tree diagram, as seen on the previous page, holds the answer.

Ashley realised that the branches in the first three stages of the tree diagram show all the possible arrangements.

So, there are $4 \times 3 \times 2$ arrangements.
What about if any two balls were chosen from the original 4 ?
We can use the branches in the first two stages; so, 4×3 arrangements.
What if Ashley had n balls and chose to arrange any r of them?
How many arrangements would be possible?
Well, all the stages in a tree diagram would provide n ! branches, but we would need to divide n ! that by $(n-r)$!

The formal name for arrangements of this type is permutations.
The notation for the number of permutations of r objects chosen from n objects is P_{r}^{n}, and

$$
P_{r}^{n}=\frac{n!}{(n-r)!}
$$

If Ashley had 15 differently coloured balls and took any 5 balls from the 15 , how many permutations would there be?

$$
P_{5}^{15}=\frac{15!}{(15-5)!}
$$

To calculate P_{5}^{15}, you can do the following. Enter:
(1) (5)
(-D) (V) to select Probability
(®) (V) to select Permutation (\mathbf{P})
360360

So, $P_{5}^{15}=360360$.

8.3 Combinations

Ashley was still not done, wondering what happened if only the colour combination deemed one collection to be different to another, rather than the colour and the order of the colours. How many of these type of collections would there be?

For example, instead of ordering the red, yellow and green balls as follows: R-Y-G, R-G-Y, Y-R-G, Y-G-R, G-R-Y and G-Y-R, we just paid attention to the combination of red, yellow and green and not the order.

Ashley thought for a while and realised there would be $\frac{1}{r!} \times P_{r}^{n}$ collections, because we only need to count $\frac{1}{r!}$ of the permutations.

Collections like this, when the order is not considered to matter, are formally called combinations.

The notation for the number of combinations of r objects chosen from n objects is C_{r}^{n}, and

$$
C_{r}^{n}=\frac{1}{r!} \times P_{r}^{n}=\frac{n!}{(n-r)!r!}
$$

If Ashley had 15 differently coloured balls and had to write down every combination of 5 balls taken from the 15 , how many combinations would there be?

$$
C_{5}^{15}=\frac{15!}{(15-5)!5!}
$$

To calculate C_{5}^{15}, you can do the following.
Enter:

So, $C_{5}^{15}=3003$.

8.4 Distribution - Normal

In 1861 Dr C.R.A. Wunderlich studied the body temperatures of many thousands of healthy people. The body temperatures were measured under standard conditions. Dr Wunderlich concluded that, for the population of healthy people, body temperature (T) was normally distributed with a mean of $37^{\circ} \mathrm{C}$ and a standard deviation of $0.5^{\circ} \mathrm{C}$.
Using Dr Wunderlich's conclusions, find the percentage of the population of healthy people who had a body temperature:
a) between $37^{\circ} \mathrm{C}$ and $38.2^{\circ} \mathrm{C}$.
b) above $39^{\circ} \mathrm{C}$.

To answer part a) we need to calculate $\mathrm{P}(37<T<38.2)$.
We can calculate this as follows.
From the HOME (©) screen, launch the
Distribution application by selecting Distribution and pressing (06).

Binomial	PD
Binomial	CD
Normal	PD
Normal	CD

(v) \vee to select Normal CD, which is the option we require.

The parameters are now entered and you are ready to calculate $\mathrm{P}(37<T<38.2)$.
(EXE)

So, about 49% of the population had a body temperature between $37^{\circ} \mathrm{C}$ and $38.2^{\circ} \mathrm{C}$.

To answer part b) we need to calculate $\mathrm{P}(T>39)$.
We can calculate this as follows.
(AC)
(3) (9) EXE
(1) (0) (0) (0) EKE

Normal CD
Lower:39
Upper:1000
$\mu \quad: 37$

Note: When entering an upper limit in a situation like this, we enter a value that is many, many standard deviations higher than the mean. 1000 in this case.to select Execute.

oExecute
(XE)

So, about 0.003% of the population had a body temperature above $39^{\circ} \mathrm{C}$.
Consider the hottest 10% of the population. What was the lowest body temperature in this group.

To answer this question we need to calculate t, such that $\mathrm{P}(T \geq t)=0.1$.
The Inverse Normal function can help us with this calculation. However, it calculates x, such that $\mathrm{P}(X<x)=p$.

Thus to find the value of t we require, we need to find $\mathrm{P}(T<t)=0.9$. We can do that as follows:
(9) (9)
(v) (v) (v)

Inverse Normal will then be selected, and it is the option we need.

Binomial CD
Normal PD
Normal CD
Inverse Normal

So, the lowest body temperature in the hottest 10% of the population was approximately $37.6^{\circ} \mathrm{C}$.

8.5 Distribution - Binomial

A common drug is known to cause a mild side effect in some people.
Data shows that one-in-eight of those who take the drug experience the side effect.
For a given group of people who take the drug, let Y be the number who experience the side effect.

Given that Y can be modelled using the binomial distribution, find the probability that if:
a) sixty-four people take the drug, eight will experience the side effect.
b) 350 people take the drug, fifty or more will experience the side effect.

To answer part a) we note that $n=64, p=\frac{1}{8}$ and we need to calculate $\mathrm{P}(Y=8)$.
We can calculate this as follows.
From the HOME (©) screen, launch the
Distribution application by selecting Distribution and press © (OK).

Binomial PD
Binomial CD
Normal PD
Normal CD

Binomial PD, which is the option we require.

(01) (V) to select Variable
 (0K)

The parameters are now entered and you are ready
 to calculate $\mathrm{P}(Y=8)$.

So, there is about a 15% chance that eight of the sixty-four people will experience the side effect.

To answer part b) we note that $n=350$ and we need to calculate $\mathrm{P}(Y \geq 50)$.
We can calculate this with the help of the Binomial CD function. However, it calculates $\mathrm{P}(Y \leq y)$. So, we need to calculate $1-\mathrm{P}(Y \leq 49)$, which we can do in the following way.
(5) (5) (v)

Binomial CD will then be selected, and it is the option we need.

(10) (ㄷ) to select Variable

(0)

(4) (9) (EXE)
(3) (5) (0) © © Ex

The parameters are now entered and you are ready to calculate $\mathrm{P}(Y \leq 49)$.

(EXE)

So, $\mathrm{P}(Y \leq 49)$ is approximately 82%.

To store this value as A press:

We can now calculate $1-\mathrm{P}(Y \leq 49)$ in the Calculation application as follows:
(ㄷ) (く) (く) (10)
(1) $-(4)$
(Ex)

So, there is about a 17.6% chance that fifty or more people, of the 350 , will experience the side effect.

9.1 Complex number calculations

The Complex application enables various calculations with complex numbers to be done.
From the (b) screen, launch the Complex application.

Note that i is seen at the top centre of the screen to indicate that outputs will be in cartesian form $(a+b \boldsymbol{i})$. This is the default setting.

Results can be displayed in either cartesian $(a+b \boldsymbol{i})$ or polar form $(r \angle \theta)$.
First ensure the calculator is set to Radians.
If it is not, then:
\geqslant to select Calc Settings \rangle,
(OK) \vee to select Angle Unit \rangle,

(OK) to see the options,
(V) (OK) to choose the angle setting to be Radian.
(AC) to return to the calculation screen.
Note that R is seen on the top left of the screen to indicate the calculator will calculate set to work in radians.

Let $z=2+i \sqrt{3}$.
a) Calculate $\arg (z)$
b) Express z in polar form.

Press:

So, $\arg (z) \approx 0.714^{c}$.

To convert to polar form, we could now find the modulus, or use the automatic conversion feature as follows:

(EXE)

So, $2+i \sqrt{3} \approx 2.65 \operatorname{cis}\left(0.714^{c}\right)$.
If you want the output of complex number calculations to be displayed in polar form without you having to convert them, you can change to Complex Result as follows:

큐 to select Calc Settings $\boldsymbol{\lambda}$,
(®1) (ㅅ) © © to select Complex Result \downarrow,
(10) ($($) to select $\operatorname{Or} \angle \boldsymbol{\theta}$
(©1) to choose the to be $\mathbf{r} \angle \boldsymbol{\theta}$.
(AC) to return to the calculation screen.
Now enter:
(3) $-(3$
(1) (9) (i)

- (6)
(EXE)

$3-3 i-6$	
	$3 \sqrt{2}<-\frac{3}{4} \pi$

9.2 Vector calculations

When in the Vector application, various two and three-dimensional vector calculations can be done.

Given points $\mathrm{P}(1,2,3), \mathrm{Q}(3,3,1)$ and $\mathrm{R}(8,4,11)$
a) Calculate $\overrightarrow{P Q} \cdot \overrightarrow{Q R}$
b) Calculate $\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PR}}$
c) Calculate a vector perpendicular to both $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PR}}$.

Firstly, $\overrightarrow{\mathrm{PQ}}=(2,1,-2), \overrightarrow{\mathrm{QR}}=(5,1,10)$ and $\overrightarrow{\mathrm{PR}}=(7,2,8)$. application.

To set the dimension for each vector, press:
(0) to select VctA:None
(10)

Vector Dimension? Dimensions :2 oConfirm

Press:

```
(>) (v) select 3 Dimensions
(01) to select DConfirm
(01)
```

Enter each dimension, pressing (Exe) after each.

(01) to return to the vector calculation screen.

Repeat the process described above to enter $\overrightarrow{Q R}$ and $\overrightarrow{P R}$ as VctB and
 VctC respectively.

Press (Ac) when you are done.

To calculate $\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{QR}}$ (the scalar (or dot) product), press:
(1) to select Vector

(OK) (V) to select VctA

(OK)

Then:
(1) to select Vector
(OK) to select Vector Calc
(OK) to select Dot Product

Vcta•I

(OK)
Then:
([ロ) to select Vector

(OK) (V) to select VctB
(0K)
(0K)

Now calculate $\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PR}}(\mathrm{VctA} \cdot \operatorname{VctC})$.
Note that pressing \leqslant will insert the cursor into the working line, so it can be edited.

So $\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PR}}=0$, meaning that $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PR}}$ are perpendicular.

To calculate a vector that is perpendicular to both $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PR}}$, we can calculate the vector product (or cross product) of $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PR}}$, denoted as $\overrightarrow{\mathrm{PQ}} \times \overrightarrow{\mathrm{PR}}$

Index

Answer memory, 6, 16, 21
Argument, 68
Binomial probability calculations, 66
Boxplot, 31
Combinations, 63
Complex numbers, 68
argument, 68
cartesian form, 68
polar form, 69
Correlation coefficient, $r, 35$
Cross (vector) product, 71
Cubed roots, 22
Decimal approximation, 5, 10, 15, 22, 23, 24, 26, 40
Decimals, 10, 14
Define a function, 54
Degrees, 38, 40
Degrees, minutes and seconds, 38
delete data, 29
Deleting data, 28
Dot (scalar) product), 71
Exponents, 20
Factorials, 60
Financial calculation, 25
Five number summary, 30
Fix, 10, 11, 25
Fraction, 13
Frequency, 27
GCD, 46
Improper fraction, 16
Initialise, 4
Interest, 25
Inverse Normal calculations, 65
LCM, 44
Least square line, 34,35
y-intercept, 35
slope, 35
Letter memories, 18
Linear Regression, 34
Logarithms, 26
MathI / DecimalO, 7
MathI / MathO, 7
Mean, 32, 33
Median, 30
Memories, 18
Mixed number, 9, 13, 16, 17, 39
Norm2, 12
Normal probability calculations, 64
Permutations, 62
Power, 20
Prime factorisation, 48
Product function (П), 53
Quartile, 30
Radians to degrees, 43
Random numbers, 36
Reset, 4
Scientific notation, 42
Shift key, 4
Solving an equation, 56
Square root, 22
Standard deviation, 32, 33
Statistics application, 27
Summation, 51
Table of values, 54
Tree diagram, 61
Trigonometry, 40
Vectors, 70
Verify, 49
y-intercept, 35

EDUCATION

Inspired by Australian Teachers for Australian Students

For further support, including:
- Free emulator software -
- Free calculators for teachers -
- Video tutorials -
- Classroom resources -
- How do I ... guides -

